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Abstract:   Age-structured fish stock assessment models are fitted to catch-age data and 

therefore ageing errors could influence management advice based on these methods.  Lake 

whitefish (Coregonus clupeaformis) populations within much of the U.S. waters of Lake Huron 

are assessed annually using age-structured assessments, which are used to recommend 

appropriate yields.  We calculated values of ageing error for Lake Huron lake whitefish 

consistent with paired scale and otolith ages under the assumption that production aging was 

based on scales and otolith ages represented true age.  We evaluated the potential effect of these 

errors on the stock assessment that was used to recommend appropriate lake whitefish yield for 

management unit WFH01 of Lake Huron in 2008.  Given substantial uncertainty regarding the 

appropriateness of our ageing error model for describing actual aging error, we also explored 

how sensitive assessments were when results were adjusted for different levels of ageing error 

and bias.  Our analysis of scale and otolith ages suggested ageing bias associated with scale-
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based ages (treating otolith-based ages as true) declined from an upward bias of +1.4 yrs at age 4 

to +0.7 yrs for ages 10+, while ageing noise was constant across ages with a standard deviation 

of 1.01 yrs.  Incorporating these ageing errors into the stock assessment resulted in an 11 to 16% 

decline in the recommended yield relative to a model that did not account for ageing errors.  

Using different levels of noise and bias to adjust stock assessment showed that results were 

sensitive to the magnitude of these errors and that the effects of adjusting for ageing error could 

even change in direction dependent on the magnitude of error.  We suspect that these specific 

results depend in part on abundance at age present in the last modeled year, so the specific results 

should not be generalized to other years and stocks.  An examination of how well the assessment 

models fit, depending on the error structure that was assumed, show that models with constant 

ageing error across ages and no bias fit better than either the status quo model without aging 

error or the adjustment based on our analysis of scale-otolith ages.  This suggests an intriguing 

possibility that bias in aging error might be estimable during fit of the model and that treating 

otolith ages as known may be suggesting more bias than is really the case.  While the results of 

this pilot study are not definitive, they clearly show that what is assumed about aging error can 

have important effects.  We recommend that the influence of aging error on assessment results be 

explored further using simulations. 
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Introduction 

 Age-structured stock assessment models, such as statistical catch-at-age analysis 

(SCAA), rely on accurate age composition data to estimate fish abundance, harvest rates, and life 

history parameters.   Errors in age assignment (ageing error) may result in biased age 

composition data and stock estimates, which could lead to errors in management targets such as 

total allowable catch (TAC; Reeves, 2003).  The form and magnitude of ageing error may have 

implications for the performance of age structured assessments used to set TACs or otherwise 

recommend fishery management actions.  Ageing error takes on two forms: bias and noise.  Bias 

is systematic error in age assignment whereby fish of true age a are assigned ages that 

consistently deviate from the true age in either a positive (over-ageing) or negative direction 

(under-ageing).  Noise is random uncertainty in assigned age given true age.   

 Lake whitefish (Coregonus clupeaformis) populations in much of the U. S. waters of the 

Laurentian Great Lakes are managed by TACs or other fishery management actions such as 

effort limitations to achieve recommended yields that do not exceed levels that would create a 

high risk of spawning stock biomass falling below levels needed for adequate reproduction 

(Ebener et al., 2005).  These TACs or recommended yields (for brevity TACs and recommended 

yield are jointly referred to as TAC for the rest of this report) are determined from biomass, 

mortality, and gear selectivity estimates obtained from the most recent SCAA model.  The form 

and magnitude of ageing error, and their effects on stock assessment-based TACs and other 

parameters used for management advice are not well understood for these populations.  There is 

concern that the use of scales as the primary ageing structure could result in substantial amounts 

of ageing error.  Moreover, lake whitefish growth has declined since the early 1990s and the 

amount of ageing error is thought to be inversely related to fish growth rates.  To address these 
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issues, we investigated (1) the magnitude of ageing bias and noise for lake whitefish in Lake 

Huron, and (2) the effect of ageing error on age-structured stock assessments and resulting 

TACs, using the stock assessment from management unit WFH01 of Lake Huron used to 

recommend a yield for 2008 as an example.   

 

Methods 

Approach 

 Our approach was to first obtain estimates of ageing error bias and noise for lake 

whitefish from Lake Huron that were consistent with paired scale-otolith ages, an assumption 

that production ages used scales, and that otolith ages are true ages.  We did this by fitting ageing 

error models that predict scale age (assigned age) as a function of the otolith age (assumed true 

age) for a sample of fish that were double-aged with scales and otoliths.  Ageing error matrices 

were computed from these estimates and for several additional hypothetical ageing error 

scenarios.  Ageing error matrices were used within the SCAA stock assessment model for 

WFH01, which had been used to recommend yield for 2008, to adjust the predicted catches-at-

age for ageing error.  The effects of adjusting for ageing error on the assessments and resulting 

TACs was evaluated by comparing the results of the stock assessments that adjusted for ageing 

error, with the results of the original assessment, which used a model that did not adjust for 

ageing error.   

 

Ageing Error Estimates 

 We estimated ageing error bias and noise for Lake Huron lake whitefish using data from 

individual fish that were aged using both scales and otoliths under the assumption that otolith age 
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represented the true age.  Lake whitefish were collected with gill and trap nets in May to October 

2000 and 2006 from commercial fisheries and fishery-independent surveys.  These fish ranged 

from otolith age 2 up to age 20.  The lake whitefish assessment for management unit WFH01 

considered seven age classes: 4-10+; the last age class served as a plus group representing all fish 

age-10 or greater.  Thus, for this analysis, we aggregated all otolith age 10 and greater fish into 

an age-10+ group for the ageing error analysis.  Sample sizes for young fish were sparse, so we 

included age 2 and 3 fish in the analysis despite their exclusion from the stock assessment 

because these age classes could easily be excluded from the ageing error matrices before their 

inclusion in the stock assessment models (see SCAA Models and TAC, below).   

 Ageing error was based on  models that related scale age (b) as a function of otolith age 

(a) under varying assumptions regarding the functional form of the relationship and following 

the general approach of Richards et al. (1992).  The expected value of scale age given otolith age 

(E{b|a}) was modeled as either a linear or power function of otolith age, with intercept β0 and 

slope β1 for the former case, and coefficient β0 and exponent β1 for the latter.   The distribution 

of scale age given otolith age was modeled as either a normal or gamma distribution with mean 

E{b|a} and variance σ
2

a.  The standard deviation of scale age σa was modeled as either a linear 

or power function of otolith age, with intercept β0σ and slope β1σ for the former case, and 

coefficient β0σ and exponent β1σ for the latter.  Each four-parameter model was fit using 

maximum likelihood assuming that the observed scale age frequencies for a given otolith age 

were multinomially distributed with probability vector pa.  The probability vector was computed 

for a given otolith age a  by integrating over scale ages from b-0.5 to b+0.5 for each integer 

value of b using the appropriate cumulative distribution function (normal or gamma) with 

expected value E{b|a} and variance σ
2

a.  The probability for the plus group (age-10+) was 
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computed by integrating over scale ages from b = 9.5 to ∞.  Given a working assumption that 

production ages are based on scales and otolith ages were correct, these probability vectors 

provided distributions of observed ages given true age.  We fit eight models representing all 

possible combinations of functional forms and distributional assumptions and used Akaike’s 

information criterion (AIC) to select the best-fitting model.  We also explored reduced-parameter 

models to test whether ageing bias (i.e., E{b|a} – a) and standard deviation varied over otolith 

ages (i.e., bias H0: β1=1.0; σa H0: β1σ=0). 

 Ageing error matrices were computed for the best-fitting model for the scale-otolith data 

and for the hypothetical ageing error scenarios.  We used a range of hypothetical scenarios both 

because there is substantial uncertainty about our assumption that otolith ages represent true 

ages, and to explore the general sensitivity of the assessment to aging error.  The ageing error 

matrix is a matrix of probabilities that an individual fish of otolith age a (rows) is assigned a 

scale age b (columns).  The ageing error matrix for the best-fitting model was constructed by 

assembling the maximum likelihood estimates of the multinomial probability vectors for each 

otolith age (pa) as the rows of the matrix.  Ageing error matrices for hypothetical scenarios were 

constructed by specifying the appropriate parameters of the ageing error model and carrying out 

the probability calculations as previously described. 

 

SCAA Models and TAC 

 The basis for our analyses was a SCAA model that was used to recommend the 2008 lake 

whitefish yield (TAC) for management unit WFH01 by fitting to data collected through 2006.  

Briefly, the model estimated annual age-4 recruitments, annual fishing effort deviations for gill 

and trap net fisheries, time-varying gear selectivity parameters for both fisheries, and stock-
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recruitment parameters.  The model was fit to observed age composition, commercial catch, and 

effort data for both fisheries.  The model considered seven age classes: 4-10+, with the last class 

serving as a plus group representing all fish age-10 or greater.  Natural mortality, fecundity, 

maturity and weight-at-age were estimated external to the model and input as known quantities.  

Gear selectivity was modeled with a double logistic function and was allowed to trend over time 

according to quadratic function.  The TACs were estimated by projecting the estimated whitefish 

population forward through the next fishing season, accounting for fishing and expected natural 

mortality and projecting the associated harvest and yield. The fishing mortality rates in these 

projections were adjusted to match an upper bound on total annual mortality (A) of 0.65. 

 We fit eleven different SCAA models, each representing a different assumption about the 

magnitude of ageing error bias and noise.  Ageing error was incorporated into the stock 

assessments by multiplying the model-predicted catch-at-age by an ageing error matrix 

representing one of the 11 ageing error scenarios using the general approach of Fournier and 

Archibald (1982).  The ageing error matrices were computed as previously described in Ageing 

Error Estimates, above).  Ageing error matrices were treated as known without error. 

 The baseline SCAA model assumed no ageing error (ageing error matrix = identity) and 

was identical to the stock assessment that was used to recommend the 2008 TAC.  Model 2 

adjusted for ageing error by assuming estimates of ageing error, calculated as described in 

Ageing Error Estimates (above), represented the magnitude of ageing error that was present 

throughout the time series.  Model 3 assumed ageing error bias and standard deviation before 

1992 was 50% of the current estimates.  This scenario attempted to address the concern that lake 

whitefish growth rates have declined since the early 1990s and the magnitude of ageing error is 

inversely related to growth rate.  The reduction percentage of 50% was arbitrarily chosen, but 
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was an attempt to characterize this hypothetical case in the absence of data from the early time 

period.   

 In addition to refitting the SCAA model using levels of aging error consistent with the 

analysis of scale-otolith ages, the SCAA model was fit with a range of hypothetical levels of bias 

and standard deviation for noise to explore how incorporating these levels of error influenced 

estimates.  Models 4 – 7 represented increasing ageing noise and were characterized by error 

standard deviations of 0.25, 0.5, 1.0, and 2.0 years, but with no ageing bias.  Ageing error 

matrices for these models were computed such that ageing error was unbiased, constant across 

ages, and had a standard deviation of the appropriate value.  This was accomplished by assuming 

a linear relationship between assigned age and true age with an intercept of 0 yrs, slope of 1.0, 

and a normal distribution for assigned age given true age with a standard deviation set at the 

appropriate value.  Models 8 – 11 represented increasing ageing bias in the presence of a modest 

amount of ageing noise (sigma = 0.25 yr) from a bias of 0.25, 0.5, 1.5, and 2.5 years.  We added 

this noise so that fractional amounts of bias (e.g. 0.5 yrs) were meaningful.  Ageing error 

matrices for these models were computed such that the ageing error had the appropriate amount 

of bias, was constant over ages, and had a standard deviation of 0.25 yrs.  This was accomplished 

by assuming a linear relationship between assigned age and true age with an intercept 

representing the appropriate amount of bias, slope of 1.0, and age-invariant normally-distributed 

assigned age given true age with σ = 0.25 yrs. 

 

Results 

Ageing Error Estimates 
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 A total of 202 lake whitefish were aged by scales and otoliths for use in the ageing error 

analysis.  Sample sizes for lake whitefish less than age 10 were small (n = 49) relative to the 

number of fish in the age-10+ group (n = 153).  Across all ages, scale ages for lake whitefish 

younger than otolith age 10 were positively biased whereas scale ages for fish greater than age 

10 were negatively biased (Figure 1).  Ageing error models, which were fit to aggregated data 

with an age 10+ plus group, suggested that aging error bias, but not noise, depended on fish age.  

The best-fitting model estimated the expected scale age as a linear function of otolith age and 

assumed a normal distribution for scale age given otolith age with a constant standard deviation 

(Table 1).  From the best-fitting model, expected bias (i.e., E{b|a} - a) declined with age from 

+1.4 yrs at age 4 (i.e., otolith age) to 0.7 yrs at age 10.  Noise was constant across ages with a 

standard deviation of 1.01 yrs.  To illustrate the magnitude of ageing error based on these 

estimates, consider that the scale age for an otolith age-6 lake whitefish would have a 95% 

prediction interval of 5 – 9 yrs.  Model-predicted frequencies of scale-aged fish for a given 

otolith age matched the observed data reasonably well but model fit for young age classes (i.e., < 

8 yrs) was difficult to ascertain because of small sample sizes (Figure 2). 

   

SCAA Models and TAC 

 Adjusting for ageing error within the lake whitefish stock assessment model affected 

parameter estimates and TACs in complex and unpredictable ways.  Adjusting for ageing noise 

had relatively modest effects on estimated recruitment, biomass, and gear selectivity, whereas 

adjusting for ageing bias had greater effects on these quantities (Figures 3, 4, 6, and 7).  

Adjusting for ageing noise increased the relative magnitude of recruitment peaks, thereby 

making recruitment appear more variable from year to year (Figure 3b) compared to the baseline 
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stock assessment (Model 1).  Adjusting for ageing bias caused a general decline in the magnitude 

of estimated recruitment along with shifting estimated recruitment peaks to later years, but did 

not affect the relative magnitude of the peaks (Figure 3c).  Incorporating observed levels of 

uncertainty (Model 2), which included  moderate bias and noise, resulted in a general decrease in 

the magnitude of recruitment across years but also a large estimated recruitment peak in 2003 

that was not produced by any of the other models (Figure 3a).   Assuming less ageing error 

before 1992 (Model 3) resulted in similar recruitment estimates as Model 2 (Figure 3a). 

 Biomass estimates were generally lower when adjusting for ageing error, and these 

effects were more severe for bias than noise (Figure 4).  For example, adjusting for a bias of +2.5 

years resulted in biomass estimates that were less than 50% of baseline estimates in some years 

(Figure 4c).  Incorporating observed levels of ageing error (Model 2) resulted in substantially 

lower biomass estimates early in the time series but recent estimates were close to the baseline 

model (Figure 4a).  Assuming less ageing error before 1992 (Model 3) produced biomass 

estimates that were more similar to the baseline model early in the time series, but recent 

estimates were similar to Model 2 and the baseline (Figure 4a). Gill and trap net estimated 

selectivity generally shifted toward younger age classes when adjusting for ageing error (Figures 

5 and 6).  This effect was most pronounced for ageing bias than for noise and for gill net (Figure 

5) than for trap net selectivity (Figure 6). 

 Total annual mortality estimates were generally higher than the baseline model when 

adjusting for bias and noise (Figure 7).  However, mortality estimates were close to the baseline 

estimates for all but the most severe cases of ageing error.  The models of observed ageing errors 

(Models 2 and 3) produced total annual mortality estimates that were similar to baseline 

estimates in recent years. 
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 Adjusting for ageing errors resulted in an increase in the TAC for moderate amounts of 

ageing error, but as ageing error increased, a dome shaped pattern was revealed whereby TAC 

declined below the baseline TAC at very high levels of bias and noise (Figure 8).  Adjusting for 

observed amounts of ageing error (Model 2) resulted in a modest decrease in the estimated TAC 

suggesting that the baseline TAC may have been overly optimistic by approximately 16%.  If 

ageing error was less prior to 1992 (Model 3) then the baseline TAC was overly optimistic by 

11%.   

 There were substantial differences among the stock assessment models that made 

different adjustments for ageing error in how well they matched observed data.  Model 6, which 

assumed no ageing bias and moderate ageing noise (σ = 1.0 yrs), fit the observed data better than 

the other models we tested (Table 2).  None of the top-5 best-fitting models assumed ageing bias 

of more than +0.25 yrs.  The worst-fitting models were those that adjusted for large amounts of 

ageing bias.  The observed ageing error models (Models 2 and 3) were in the bottom half in 

terms of model fit suggesting that these scenarios were less plausible than the low-moderate 

noise/low bias scenarios, based on the observed age composition, catch, and effort data.  These 

findings disagreed with our estimates of ageing error from the otoliths vs. scales analysis. 

 

Discussion 

 Our study suggests that if ageing error levels are close to those estimated based on the 

scale-otolith analysis then adjusting for aging error in the stock assessment could have a modest 

influence on estimated stock sizes and exploitation rates for the 2006 assessment and resulting 

2008 TAC for management unit WFH01.  Specifically, the 2008 TAC may have been too high 

because it did not properly account for ageing error.  We must take care in drawing general 
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conclusions from these results about the effects of aging error on lake whitefish assessments in 

the Great Lakes for several reasons.   

 First, our analysis considered a single assessment year (and TAC) for a single 

management unit.  Conclusions regarding other assessment years and management units would 

be invalid because they are outside the scope of this analysis.  It is clear that the effect of 

adjusting for ageing error should depend in principle on the actual age composition of the stock.  

Thus, for example, although accounting for observed ageing error in our analysis resulted in a 

decrease in the 2008 TAC, we have no reason to believe that similar levels of ageing error 

applied to an earlier assessment for WFH01 would produce the same result, or would produce 

similar results for other stocks.   

 Second, our analysis accounted for effects of ageing error on the age composition data 

only and did not consider effects on other age-based inputs such as maturity and weight-at-age 

estimates.  Under positive ageing bias (over-ageing) weights-at-age that ignore ageing error 

would be underestimated.  Therefore, adjusting for ageing error would result in an increase in the 

mean weight of an age class, which would adjust biomass estimates upwards.  An increase in 

estimated biomass could result in a higher TAC, which could counteract the decreased TAC 

attributable to the ageing error adjustment to the age composition.  Maturity-at-age (i.e., 

proportion mature) would be underestimated if ageing error was ignored, which could affect 

spawning stock biomass estimates.   

 It is generally accepted that ageing error can introduce bias into stock assessments and 

management advice.  Some modern stock assessments account for ageing error by using ageing 

error matrices to adjust predicted catches-at-age as we did in our analysis (e.g., Courtney et al., 

1999; Dorn et al., 2003; Bence et al., 2011).  However, surprisingly few studies have attempted 
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to make general inferences concerning the effects of aging error on stock assessments.  One 

possible explanation for this is that ageing error effects are stock- and time-specific.  Reeves 

(2003) is one of the few peer-reviewed studies to use a simulation approach to assess the 

expected effects of ageing error on age-structured stock assessments.  Reeves (2003), which used 

Baltic Sea cod stocks as an example, found that all types of ageing error tended to cause 

management advice to be overly optimistic.  However, the effects of ageing error on spawning 

stock biomass estimates varied substantially among individual realizations of the simulation.  

This finding suggests that ageing error effects on a stock assessment for a particular year may 

deviate from the expectation of an overly-optimistic TAC. 

 We attempted to assess the influence of changes in the magnitude of ageing error over 

time by exploring a scenario in which ageing error was lower early in the time series.  This 

approach required selection of an arbitrary reduction in ageing error (i.e. 50%).  Although this 

reduction is a reasonable starting point, we have no information from which to assess changes in 

ageing error over time.  Length-at-age data for lake whitefish clearly show declining growth 

since the 1980s but the relationship between ageing error and fish growth rates remains unclear 

for these populations.  Samples of double-aged fish from early in the time series, which to our 

knowledge do not exist, would be required to fully investigate this phenomena and conduct a 

more informed assessment of ageing error effects on TACs. 

 The scale vs. otolith ages analysis rested on the assumption that otolith ages represented 

the true age.  Anecdotal evidence suggests that otolith ages for young lake whitefish may 

underestimate the true age as has been seen in other species (M. Ebener, personal 

communication).  If this is the case, then our scale vs. otoliths ageing error analysis would 

overestimate ageing bias for young fish.  Unfortunately, further investigation of this potential 
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problem is difficult without an analysis of otoliths of known-age lake whitefish, which has not 

been attempted to our knowledge.  Regardless of the accuracy of otolith ages, the ageing error 

analysis would benefit from an increase in the sample size of age-2 to 8 fish, which would 

improve precision of ageing error estimates.   

 We found that assessment fits to the observed data were influenced by the adjustments 

for ageing error.  This suggests that it may be possible to estimate ageing error parameters as part 

of the assessment process.  This is not a new idea (Fournier and Archibald 1982) but has proven 

difficult to accomplish for some applications.  Even if all the ageing error parameters prove 

difficult to estimate solely internally to the assessment, this result is promising because it may be 

possible to estimate noise externally based on repeat ageing of structures and estimate bias 

internally.  Estimating bias externally based on aging of multiple structures (e.g., otoliths and 

scales) is problematic, because it requires assuming one structure provides true ages. 

 

Future Analyses 

 One possible next step would be to repeat our analysis using data from other management 

units to assess the spatial generality of the results.  Retrospective analyses conducted on a stock-

by-stock basis would reveal the temporal generality of our findings.  Together these might 

suggest whether adjustment for aging error has any general tendency to either increase or 

decrease TACs or produce other systematic effects.  Another route for investigation, which we 

believe would be more definitive, would be a simulation study, which would provide estimates 

of the effects of ageing error that would be more general that the results of our analysis on 

WFH01.  With this approach, we would generate data representing various ageing error 

scenarios and fit assessment models that make adjustments for ageing error to test the 
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performance of the adjustments at reducing parameter bias due to ageing error.  By repeating 

these simulation-estimation experiments many times, we could begin to understand the expected 

effects of aging error along with estimates of uncertainty in these responses.  We could also use 

such simulations to explore the extent to which ageing error can be estimated internally to the 

assessment.  
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Table 1. Models relating scale age (b) to otolith age (a) that were fit to data from lake whitefish 

that were aged with scales and otoliths.  All models shown here assumed scale ages were 

normally-distributed given otolith age. 

Functional Form      

E{b|a} σa β0 β1 β0σ β1σ ΔAIC 

linear constant; B1σ=0 1.82(0.39) 0.89(0.05) 1.01(0.11)  0 

linear; β1=1 constant; β1σ=0 1.04(0.15)  1.16(0.10)  1.91 

linear linear 1.84(0.40) 0.89(0.05) 1.07(0.31) -0.01(0.04) 1.94 

linear power 1.82(0.40) 0.89(0.05) 1.06(0.42) -0.03(0.20) 1.98 

power linear 1.88(0.24) 0.75(0.06) 1.27(0.32) -0.03(0.04) 5.32 

power power 1.85(0.24) 0.76(0.06) 1.41(0.54) -0.17(0.20) 5.34 
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Table 2.  Negative log likelihoods of the SCAA models representing different assumption 

regarding the magnitude and type of ageing error.  The parameters of the scale-otolith age model 

used to compute the ageing error matrix are shown for each model.  The ageing error matrix for 

each model can be found in Appendix A. 

 Ageing Error Parameters  

Model β0 β1 β0σ β1σ -ln(L) 

(6) noise: sd=1.00 0.00 1.00 1.00 0.00 8,109.87 

(5) noise: sd=0.50 0.00 1.00 0.50 0.00 8,194.53 

(8) bias: +0.25 0.25 1.00 0.25 0.00 8,197.71 

(4) noise: sd=0.25 0.00 1.00 0.25 0.00 8,207.42 

(1) no ageing error 0.00 1.00 0.00 0.00 8,207.77 

(9) bias: +0.50 0.50 1.00 0.25 0.00 8,215.02 

(2) full ageing error 1.82 0.89 1.01 0.00 8,306.88 

(3) 50% ageing error pre-1992 0.91 0.95 0.50 0.00 8,427.60 

(7) noise: sd=2.00 0.00 1.00 2.00 0.00 8,796.10 

(10) bias: +1.50 1.50 1.00 0.25 0.00 11,289.60 

(11) bias: +2.50 2.50 1.00 0.25 0.00 18,290.30 
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Figure 1.  Scale age (y axis) vs. otolith age (x axis) for a lake whitefish from Lake Huron aged by 

both scales and otoliths.  The dots are jittered to reveal the number of samples.  The fine dashed 

line depicts the 1:1 line for reference.   
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Figure 2.  Observed (dots) and model-predicted (lines) frequency distribution of scale ages (x 

axis) for a given otolith age (different panels).  Note the two orders of magnitude variation in 

sample size among panels.  Note that the SCAA models that adjusted for ageing error considered 

only age classes 4 to 10+. 
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Figure 3.  Time series of age-0 lake whitefish recruitment estimates from 11 stock assessment 

models that adjusted for varying types and amounts of ageing error.  Each panel contains the 

estimated time series for the baseline model that did not adjust for ageing error (solid line; model 

1).  The upper panel shows estimates from two models (models 2 and 3) that adjusted for 

estimated amounts of ageing error from an analysis of lake whitefish that were double-aged with 

scales and otoliths.  The middle and lower panels show results of hypothetical scenarios 

representing unbiased ageing with varying levels of noise (middle panel) and nearly noiseless 

errors with varying degrees of bias (lower panel). 
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Figure 4.  Time series of age-0 lake whitefish biomass estimates from 11 stock assessment 

models that adjusted for varying types and amounts of ageing error.  Each panel contains the 

estimated time series for the baseline model that did not adjust for ageing error (solid line; model 

1).  The upper panel shows estimates from two models (models 2 and 3) that adjusted for 

estimated amounts of ageing error from an analysis of lake whitefish that were double-aged with 

scales and otoliths.  The middle and lower panels show results of hypothetical scenarios 

representing unbiased ageing with varying levels of noise (middle panel) and nearly noiseless 

errors with varying degrees of bias (lower panel). 
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Figure 5.  Age-specific gill net selectivity estimates for lake whitefish in 2006 from 11 stock 

assessment models that adjusted for varying types and amounts of ageing error.  Each panel 

contains the estimates for the baseline model that did not adjust for ageing error (solid line; 

model 1).  The upper panel shows estimates from two models (models 2 and 3) that adjusted for 

estimated amounts of ageing error from an analysis of lake whitefish that were double-aged with 

scales and otoliths.  The middle and lower panels show results of hypothetical scenarios 

representing unbiased ageing with varying levels of noise (middle panel) and nearly noiseless 

errors with varying degrees of bias (lower panel). 
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Figure 6.  Age-specific trap net selectivity estimates for lake whitefish in 2006 from 11 stock 

assessment models that adjusted for varying types and amounts of ageing error.  Each panel 

contains the estimates for the baseline model that did not adjust for ageing error (solid line; 

model 1).  The upper panel shows estimates from two models (models 2 and 3) that adjusted for 

estimated amounts of ageing error from an analysis of lake whitefish that were double-aged with 

scales and otoliths.  The middle and lower panels show results of hypothetical scenarios 

representing unbiased ageing with varying levels of noise (middle panel) and nearly noiseless 

errors with varying degrees of bias (lower panel). 
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Figure 7.  Time series of age-0 lake whitefish total annual mortality estimates from 11 stock 

assessment models that adjusted for varying types and amounts of ageing error.  Each panel 

contains the estimated time series for the baseline model that did not adjust for ageing error 

(solid line; model 1).  The upper panel shows estimates from two models (models 2 and 3) that 

adjusted for estimated amounts of ageing error from an analysis of lake whitefish that were 

double-aged with scales and otoliths.  The middle and lower panels show results of hypothetical 

scenarios representing unbiased ageing with varying levels of noise (middle panel) and nearly 

noiseless errors with varying degrees of bias (lower panel). 
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Figure 8.  2008 TACs (projected from the 2006 assessment) from 11 stock assessment models 

that adjusted for varying types and amounts of ageing error. 
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Appendix A.  Ageing error matrices used to adjust for ageing error within the SCAA models. 

 
 Assigned Age 

Model True Age 4 5 6 7 8 9 10+ 

(1) no ageing error 4 1 0 0 0 0 0 0 

 
5 0 1 0 0 0 0 0 

 
6 0 0 1 0 0 0 0 

 
7 0 0 0 1 0 0 0 

 
8 0 0 0 0 1 0 0 

 
9 0 0 0 0 0 1 0 

 
10+ 0 0 0 0 0 0 1 

 
 

       
(2) full ageing error 4 0.16 0.37 0.33 0.12 0.02 0 0 

 
5 0.04 0.18 0.37 0.3 0.1 0.01 0 

 
6 0 0.05 0.2 0.38 0.28 0.08 0.01 

 
7 0 0.01 0.06 0.23 0.38 0.25 0.08 

 
8 0 0 0.01 0.07 0.25 0.38 0.29 

 
9 0 0 0 0.01 0.08 0.28 0.63 

 
10+ 0 0 0 0 0.01 0.1 0.89 

 
 

       
(3) 50% ageing error pre-1992 4 0.35 0.6 0.06 0 0 0 0 

 
5 0.01 0.38 0.56 0.04 0 0 0 

 
6 0 0.02 0.42 0.53 0.03 0 0 

 
7 0 0 0.02 0.46 0.5 0.03 0 

 
8 0 0 0 0.03 0.49 0.46 0.02 

 
9 0 0 0 0 0.03 0.53 0.44 

 
10+ 0 0 0 0 0 0.04 0.96 

 
 

       
(4) noise: sd=0.25 4 0.98 0.02 0 0 0 0 0 

 
5 0.02 0.95 0.02 0 0 0 0 

 
6 0 0.02 0.95 0.02 0 0 0 

 
7 0 0 0.02 0.95 0.02 0 0 

 
8 0 0 0 0.02 0.95 0.02 0 

 
9 0 0 0 0 0.02 0.95 0.02 

 
10+ 0 0 0 0 0 0 1 

 
 

       
(5) noise: sd=0.5 4 0.81 0.19 0 0 0 0 0 

 
5 0.16 0.68 0.16 0 0 0 0 

 
6 0 0.16 0.68 0.16 0 0 0 

 
7 0 0 0.16 0.68 0.16 0 0 

 
8 0 0 0 0.16 0.68 0.16 0 

 
9 0 0 0 0 0.16 0.68 0.16 

 
10+ 0 0 0 0 0 0.02 0.98 

 
 

       
(6) noise: sd=1.0 4 0.55 0.35 0.09 0.01 0 0 0 

 
5 0.26 0.41 0.26 0.06 0.01 0 0 

 
6 0.06 0.24 0.39 0.24 0.06 0.01 0 

 
7 0.01 0.06 0.24 0.38 0.24 0.06 0.01 

 
8 0 0.01 0.06 0.24 0.38 0.24 0.07 

 
9 0 0 0.01 0.06 0.24 0.38 0.31 

 
10+ 0 0 0 0 0.01 0.05 0.94 
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Appendix A. Continued.  

       

 
 Assigned Age 

Model True Age 4 5 6 7 8 9 10+ 

(7) noise: sd=2.0 4 0.33 0.29 0.2 0.11 0.05 0.02 0 

 
5 0.23 0.26 0.23 0.16 0.08 0.04 0.02 

 
6 0.14 0.2 0.22 0.2 0.14 0.07 0.04 

 
7 0.07 0.13 0.18 0.21 0.18 0.13 0.11 

 
8 0.03 0.07 0.12 0.18 0.2 0.18 0.23 

 
9 0.01 0.03 0.07 0.12 0.18 0.2 0.4 

 
10+ 0 0 0.01 0.02 0.04 0.07 0.86 

 
 

       
(8) bias: +0.25 4 0.84 0.16 0 0 0 0 0 

 
5 0 0.84 0.16 0 0 0 0 

 
6 0 0 0.84 0.16 0 0 0 

 
7 0 0 0 0.84 0.16 0 0 

 
8 0 0 0 0 0.84 0.16 0 

 
9 0 0 0 0 0 0.84 0.16 

 
10+ 0 0 0 0 0 0 1 

 
 

       
(9) bias: +0.5 4 0.5 0.5 0 0 0 0 0 

 
5 0 0.5 0.5 0 0 0 0 

 
6 0 0 0.5 0.5 0 0 0 

 
7 0 0 0 0.5 0.5 0 0 

 
8 0 0 0 0 0.5 0.5 0 

 
9 0 0 0 0 0 0.5 0.5 

 
10+ 0 0 0 0 0 0 1 

 
 

       
(10) bias: +1.5 4 0 0.5 0.5 0 0 0 0 

 
5 0 0 0.5 0.5 0 0 0 

 
6 0 0 0 0.5 0.5 0 0 

 
7 0 0 0 0 0.5 0.5 0 

 
8 0 0 0 0 0 0.5 0.5 

 
9 0 0 0 0 0 0 1 

 
10+ 0 0 0 0 0 0 1 

 
 

       
(11) bias: +2.5 4 0 0 0.5 0.5 0 0 0 

 
5 0 0 0 0.5 0.5 0 0 

 
6 0 0 0 0 0.5 0.5 0 

 
7 0 0 0 0 0 0.5 0.5 

 
8 0 0 0 0 0 0 1 

 
9 0 0 0 0 0 0 1 

 
10+ 0 0 0 0 0 0 1 

 

 


